

Is the future of aircraft maintenance with automated NDT or SHM?

Dr Roger Groves

- Researcher in NDT/SHM Technologies
- Acting Chair, Structural Integrity & Composites Group Faculty of Aerospace Engineering Delft University of Technology

What is the Challenge?

- Operating an aircraft is expensive
 - We are looking to automate maintenance and repair to save money
 - To provide a competitive advantage to aircraft fleet operators in the Netherlands
 - Support Schiphol as a hub airport
 - Support Dutch airforce and allies in maintaining capability
 - Keep high-technology jobs in the Netherlands

Dutch Landscape

- Aero-Space Agenda Zuid-Holland 2016-2025
 - Composed of industry and knowledge institutes
- Amsterdam Schiphol Airport
 - Hub airport for KLM, many supporting MRO activities
- Woensdrecht Airbase
 - MRO hub for airforce, supported by companies
- Smaller MRO hubs at Lelystad and Maastricht airports

Outline

- Our current research topics
- Push to automation in manufacturing and maintenance
- How to automate?
 - Sensor positioning
 - Decision making
- Summary automated NDT or SHM?

Research Vision

Engineering, Science & Industry are built upon performing well-designed experiments and accurate measurements

- Experimental testing of materials and structures for verification of models and improve design
- Process monitoring and quality control for manufacturing
- In-service health monitoring of structures and materials to guide maintenance and repair processes
- Correct decision making for cost-effective use of assets and infrastructure

Aerospace NDT Laboratory

Ê

LE.R. LOTE THOSE I RE HAI UIT HE

C-SHOT

Aerospace NDT Laboratory at TU Delft

Research centre for NDT & SHM

- Our main research technologies are:
 - Optical Metrology: for 3D shape & strain sensing, optical tomography
 - Fibre Optic Sensors: Fibre Bragg grating sensors for SHM
 - **Spectral Imaging:** Hyperspectral imaging, thermography
 - Ultrasonics: Guided waves and phased array

Linescan/Point Shape Sensors

Laser head

Fixation

Glider base Glider

ŤUDelf

Application: manufacturing layup of composite materials Accuracy to 2,6 µm

How fringe projection works?

ŤUDelft

9

Fringe Projection for 3D Printer

Developed finger projection, camera and turntable system to monitor manufacturing on a 3D printer

Shearography – Experimental Layout

ŤUDelft

Example phase map from measurements on a cylinder

Detecting BVID in a composite panel with shearography

Optical Tomography for coating thickness measurement

Optical Tomography for crack propagation in GFRP

FBG (Fibre Bragg Grating) - Theory

Multi-Parameter Strain and Vibration Measurement with FBGs

1)0lt

Measure

- Bending
- Tension
- Compression
- Vibration

Hyperspectral Imaging of Adhesive Peel Test Samples

(1) Hyperspectral camera

2 Scanning platform

(3) Sample and calibration specimen

(4) Objective lens and flattening filter

Thermal Stress analysis of GFRP under fatigue loading

ŤUDelft

Phased Array Ultrasonics of gridstiffened composite panel

Detecting BVID in a composite panel with Lamb waves

Air coupled ultrasonics

Dispersion Curves (C_p) for CPPS plate

Repairing Flaws before they Happen

Traditional approach is to test raw materials, monitor the process and check part/final product

My approach is to be proactive and continuously check the product quality in real-time during manufacture:

Preventative Non-Destructive Evaluation (PNDE)

Together with process monitoring this approach can be used to roll-back the process and correct flaws in real-time

Progress so far

- 1. PNDE for hand layup in PhD research of Nick Miesen
- 2. PNDE for ATL in MSc research of Rik Tonnaer

Automating NDT/SHM

Efficient Maintenance and repair requires automated inspection & decision making. Our developments so far are:

- 1. Design of SHM systems and damage classification in MSc/PhD research of Vincentius Ewald
- 2. New computational approach for damage monitoring with FBGs in PhD research of Aydin Rajabzadehdizaji
- 3. Robot and 3D multi-sensor scanning in the research of Tigran Mkhoyan & Rik Tonnear
- 4. Integrated data fusion & processing platform (TIPP), developed by multiple researchers (lead Vassilis Papadakis)

Automating the sensor position

Automating the sensor position

SHM system design

Automated processing & decision making – signal demodulation

TUDelft

Automated processing & decision making – fringe unwrapping

a. 20X20 pixel random portions of computer generated noisy wrapped phase map b. Actual fringe locations, computer generate from corresponding non-noisy versions of wrapped phase map

Automated processing & decision making – defect detection in ATL

ŤUDelf

Summary - Automated NDT or SHM?

We need to consider and optimise the complete MRO system. All these are welcome:

- 1. Automated positioning of NDT sensors using robots, UAVs or 3D scanning systems
- 2. Installing SHM sensors is an option for new aircraft. Many challenges for retrofit for older aircraft
- 3. Consider hybrid approach, e.g. embedding markers in aircraft for NDT detection
- 4. Most important is to speed up the data handling and decision making with smart algorithms

Thank you for your attention!

