

3D Metal Printing

"The challenges it creates for NDT in Aerospace"

Rijen, November 13, 2018

- \circ AddFab
- Additive Manufacturing
- Powder Bed Fusion
- Possibilities
 - o Design
 - \circ Material
- Challenges
 - o Design
 - \circ Material
- o Future

AddFab

ADDFAB offers **engineering** and **3D metal printing services** and **supports** its customers in the technical and commercial trade-off between the **unique 3D printing feasibilities** and the established machining technologies.

o Current Partners

- o KMWE
- o NTS Group
- Machinefabriek De Valk

• Origin

- Started as AddLab in 2013 as a 3 year project
- o In 2016 KMWE, NTS & De Valk agreed to continue for at least another 3 years under the new name AddFab

• Location

o Eindhoven, Strijp-T

AddFab Confidential

AddFab

• Equipment

- o SLM Solutions SLM280HL
 - o Stainless Steel 316L
- o 3D Systems ProX300
 - Titanium Ti-6Al-4V Grade 23 ELI
- Shot Peening
- o Oven for Heat Treatment
- o Phenom World
 - Electron Beam Microscope
- Microscope
- o GOM 3D Scanner
 - o Reverse Engineering
 - Analyzing products

• Knowledge

• Team of Engineers with a combined knowledge concerning 3D metal printing of over 20 years

AddFab Confidential

AddFab

• Markets

- \circ Semicon
- o Aerospace
- (Petro)chemical, oil & gas
- o Machine Building
- Printing
- \circ Medical
- \circ Awards

6

Additive Manufacturing

- Additive instead of subtractive
- Powder Bed Fusion & Selective Laser Melting

Additive Manufacturing

Powder Bed Fusion

• Building Chamber

- Closed system
- o Inert environment
 - Less than 0,05% oxygen
- High power laser

• Building plate

- Same material as powder
- Provides strength and surface area for dissipation of heat

• Metal Powder

- $\circ~$ Particle size between 0 and 60 μm
- Virgin and recycled powder

o Models

- o 3D Engineered models in .stl file format
- Virtually placed on a building plate
- Sliced to create 2D images for the laser

Powder Bed Fusion

• Recoater

- Places a layer of fine powder on the building plate
- \circ ± 30 to 50µm thick

o Laser

- Uses a set of mirrors to locally melt the powder
- Laser beam is ±80µm in diameter

• Platform

 Building plate is lowered according to set layer thickness

• Repetitive process

• The process repeats itself, until all the layers are completed

Powder Bed Fusion

• Removing powder

 After the machine is finished the products are buried within powder

• Building plate

• Required for the dissipation of heat, products are attached to a building plate

• Heat Treatment

 Relieve products from stress build up during production

• Post-production

- Removing of support
- \circ Machining

Possibilities - Design

• Complex shapes

- No longer restriction by tooling options
- Internal structures
 - Channels for coolant or acting as heat exchangers
 - Fuel nozzles

• Product Behavior

 With different structural design, one element could be stiff and strong, while another can provide damping (or any other feature) within 1 component

Possibilities - Design

• Weight Reduction

- Optimization with Topology
- Cost-effective

• Combining parts

- Reduce amount of parts in system
- Save assembly time

• Combining Features

o Flow & Filtering

Possibilities - Examples

Original Part Volume: 263,346 cubic mm Mass: 2.06 kg

- Fuel Nozzle
- Brackets & Hinges
- o Blades
- 0 ...

Source: Siemens PLM

Topology Optimized Part Volume: 97,884 cubic mm Mass: 0.766 kg

Source: Aviation Week

ource: GE

AddFab Confidential

Possibilities - Material

• Unique microstructure

- Fast cooling rate during solidification
- Tunable with scanning parameters

• Unique alloys

• Possibility to develop high performance materials specifically for additive manufacturing

15

• Capable of tailoring the mechanical properties

Challenges NDT - Design

• Lower visibility

- More complex designed parts with a increase in internal structures that are not visible to the viewing eye
- More 'flowable' products
 - Increased design freedom and the increased use of software solutions like Topology Optimization will create more 'flowing' designs

Challenges NDT - Design

o Internal Channels

- o Complex internal channels which wrap around each other to redirect gas or liquid
- Channels are not necessarily round, but can be shaped as is required by its function

• Combination of functions & parts

- Combining functions and/or parts results in the requirement of multiple different testing techniques on a single component
- o Component reduction

AddFab Confidential

Challenges NDT - Material

• Unique products

- o Every product is unique due to the powder and changing conditions inside the build chamber
- Meltpool behavior is tunable, but not 100% repetitive
- o Risk of contamination by gas or particles

Challenges NDT - Material

o Different material characteristics

- The mechanical properties of the material can be altered and is not homogenous across every single component despite them being produced simultaneously
- Laser parameters can be altered which results in a non-homogenous material and less predictable weight and balance

Future

• Increase in knowledge

- Better understanding the behavior of production
- o Increased knowledge concerning melt behavior materials

• Machine size

- o Multi-laser machines already in the market
- Demand for bigger components in the market justifies larger machines

• Complexity

- Combining several parts in to a single component
- Topology and other optimization methods

• Material developments

- Mechanical characteristics optimized for use in a specific product
- Specially engineered alloys for use in the Aerospace industry

'Additive Manufacturing brings an already challenging world even more opportunities!'

Thank you for your attention!

